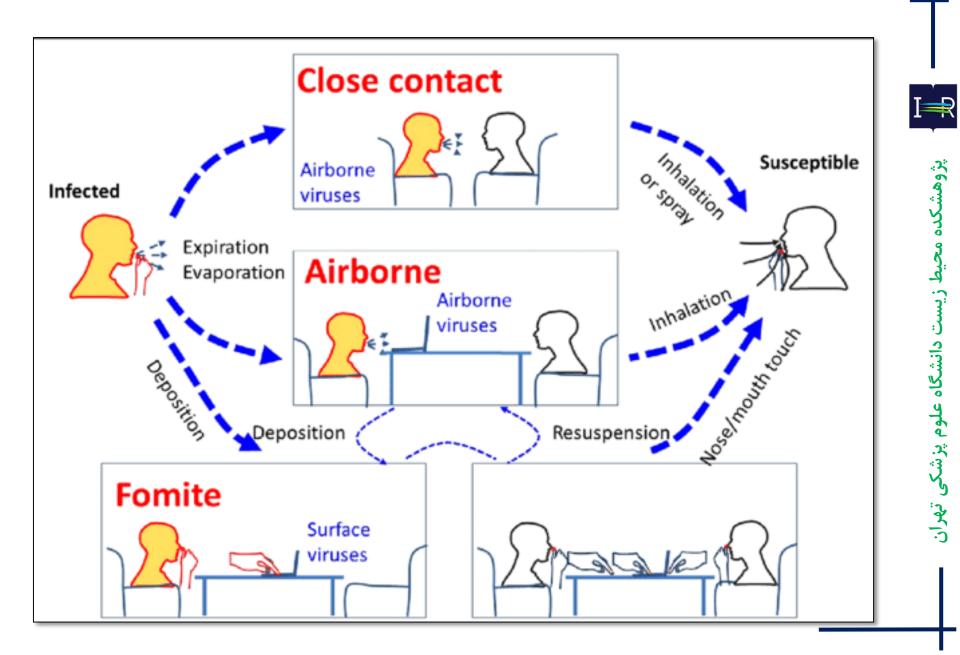


Ó


پژ<mark>وهشکده محیط زیست</mark> دانشگاه علوم پزشکی تهران

Airborne and Droplet Transmission of COVID-19

Mohammad Sadegh Hassanvand, Ph.D Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences

2020

Transmission routes of respiratory infection

Definitions

"airborne or aerosol transmission", "droplet transmission"

- The 5µm diameter threshold used to differentiate droplet from airborne is an over-simplification of multiple complex.
- Airborne transmission refers to the presence of microbes within droplet nuclei (particles <5µm in diameter) can remain in the air for long periods of time and be transmitted to others over distances greater than 1 m.
- Droplet transmission occurs when a person is in close contact (within 1 m) with someone who has respiratory symptoms. WHO, 2020

Definitions

"airborne or aerosol transmission", "droplet transmission"

- * "airborne transmission" to mean transmission by aerosol-size particles of < 10 μm. (The Infectious Diseases Society of America (IDSA))
- One should note that "aerosol" is essentially a relative and not an absolute term.
- However, in some situations, such as where there are strong ambient air cross-flows larger droplets (>20 μm) can behave like aerosols with the potential to transmit infection via this route.

Mechanisms of Airborne Viral Particle Formation

- open-close cycling of glottic structures (> $1\mu m$)
- shearing forces due to high velocity gas flow (2–5 μm) (tidal breathing may generate airflow velocities up to 1 m/s, talking 5 m/s, coughing 2–50 m/s and sneezing > 100 m/s)
- open-close cycling of terminal bronchiole airways
 (<1μm)

Aerosol particles during breathing, coughing and sneezing

Ordinary speech = ~ 10 particles/second. A ten-minute conversation = $\sim 6,000$ aerosol particles.

Activities	Created Particles
Normal breathing	<0.8 to 2.0 µm
Speaking	16 to 125 μm <0.8 to 7.0 μm 1.0 μm for shouting
Coughing	0.6 to 16 μm 40 to 125 μm
Sneezing	7 to 125 µm

Jo ok

WHO, March 27, 2020.

There is not sufficient evidence to suggest that SARS-CoV-2 is airborne, except in a handful of medical contexts, such as when intubating an infected patient.

US. CDC:

The contribution of small respirable particles, sometimes called aerosols or droplet nuclei, to close proximity transmission is currently uncertain.

However, airborne transmission from person-to-person over long distances is unlikely.

nature

https://doi.org/10.1038/s41586-020-2271-3

Accelerated Article Preview

Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals

Received: 14 March 2020 Accepted: 20 April 2020 Yuan Liu, Zhi Ning, Yu Chen, Ming Guo, Yingle Liu, Nirmal Kumar Gali, Li Sun, Yusen Duan, Jing Cai, Dane Westerdahl, Xinjin Liu, Ke Xu, Kin-fai Ho, Haidong Kan, Qingyan Fu & Ke Lan

Aerosols samples of in and around hospitals treating people with COVID-19, as well as at the busy entrances of two department stores.

They report finding viral RNA from SARS-CoV-2 in a number of locations, including the department stores.

nature

https://doi.org/10.1038/s41586-020-2271-3

Accelerated Article Preview

Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals

R

The NEW ENGLAND JOURNAL of MEDICINE

CORRESPONDENCE

Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

- In this experimental study, aerosols were generated using a three-jet Collison nebulizer under controlled laboratory conditions.
- SARS-CoV-2 remained viable in aerosols throughout the duration of 3hours.

RESEARCH LETTER

Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient

JAMA April 28, 2020 Volume 323, Number 16

Air samples were negative despite the extent of environmental contamination.

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran

Sasan Faridi ^{a,b,1}, Sadegh Niazi ^{c,1}, Kaveh Sadeghi ^{d,1}, Kazem Naddafi ^{a,b}, Jila Yavarian ^d, Mansour Shamsipour ^e, Nazanin Zahra Shafiei Jandaghi ^d, Khosro Sadeghniiat ^f, Ramin Nabizadeh ^{a,b}, Masud Yunesian ^{a,b}, Fatemeh Momeniha ^g, Adel Mokamel ^b, Mohammad Sadegh Hassanvand ^{a,*}, Talat MokhtariAzad ^{d,**}

In this study all air samples which were collected 2 to 5 m from the patients' beds with confirmed COVID-19 were negative.

Gaps to fill

- ➢ Is the virus infectious in droplets of different sizes?
- Air sampling from people when they talk, breathe, cough and sneeze and testing for viable virus in those samples
- Infectious dose
- length of exposure

Conclusion

- Airborne transmission is debated.
- Aerosol spread could occur; thought to be mostly in hospital settings.
- Some widely publicized evidence is based on experimental aerosolization rather than human studies.
- To date, there has not been a well documented case of aerosol transmission

بژوهشكده محيط زيست دانشگاه علوم پزشكى تهران